Recent years have seen CNC machine designers begin to embrace robotics, in particular for machine tending where robot loading and unloading of the machining centre can significantly increase overall throughput. This reduces the cycle time, but it also frees up human labour for more complex tasks, driving greater efficiencies and opening up new opportunities. For example, while machinists reconfigure the process for each new batch in short-run jobs, larger batch jobs can be configured to run overnight without requiring any changes.
For machine designers looking to integrate robotics into the CNC machining centre, and indeed for the customer’s operators who will need to work with the machine, there has traditionally been a stumbling block. The language used to program modern robotics is still very different to the G-Code programming language common on CNC machines.
For a skilled machine programmer or machinist, G-Codes enable a machining centre to be set-up relatively quickly. But this advantage is lost if they also have to learn a second language to program the robot, where the programming language is typically script-based.
Now, though, with Direct Robot Control, the robot is seen as another part of the machining job. Built into the MELDAS CNC controller – as used by a number of the largest CNC machine manufacturers – are a set of G-Codes that program and teach the robot. The robot can even be moved with the machine’s handwheel. All the alarms and warnings from robot and CNC are also recorded in the same log file.
According to Mitsubishi, this innovation opens up a whole realm of new possibilities in CNC machining, freeing companies from the need to find either two sets of specialist programmers or one who is adept in working with two different languages. It makes it easier for OEMs to integrate robotics into their CNC machine designs and provides a genuine competitive advantage for both them and their customers.